


   

Structures of Common Coenzymes 
The reactive parts of the molecules are darkened, while nonreactive parts are ghosted.
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Dear Colleague:

All of us who teach organic chemistry know that most of the students in our courses, 

even the chemistry majors, are interested primarily in the life sciences rather than in pure 

chemistry. Because we are teaching so many future biologists, biochemists, and doctors 

rather than younger versions of ourselves, more and more of us are questioning why we 

continue to teach the way we do. Why do we spend so much time discussing the details of 

reactions that are of interest to research chemists but have little connection to biology? Why 

don’t we instead spend more time discussing the organic chemistry of living organisms?

There is still much to be said for teaching organic chemistry in the traditional way, but it 

is also true that until now there has been no real alternative for those instructors who want 

to teach somewhat differently. And that is why I wrote Organic Chemistry with Biological 

Applications 3e. As chemical biology continues to gain in prominence, I suspect that more 

and more faculty will be changing their teaching accordingly.

Make no mistake: this is still a textbook on organic chemistry. But my guiding principle 

in deciding what to include and what to leave out has been to focus almost exclusively 

on those reactions that have a direct counterpart in biological chemistry. The space saved 

by leaving out nonbiological reactions has been put to good use, for almost every reaction 

discussed is followed by a biological example and approximately 25% of the book is 

devoted entirely to biomolecules and the organic chemistry of their biotransformations. In 

addition, Organic Chemistry with Biological Applications 3e is nearly 200 pages shorter 

than standard texts, making it possible for faculty to cover the entire book in a typical two-

semester course.

Organic Chemistry with Biological Applications 3e is different from any other text; I believe 

that it is ideal for today’s students.
Sincerely,

John McMurry
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P r e f a C e

I’ve taught organic chemistry many times for many years. Like most faculty, I 
began by trying to show 19-year-old students the logic and beauty of the sub-
ject, thinking that they would find it as fascinating as I did. It didn’t take long, 
though, before I realized what a disconnect there was between my own inter-
ests and expectations and those of my students. Some students did develop a 
real appreciation for the subject, but most seemed to worry primarily about 
getting into medical school. And why not? If a student has a clear career goal, 
why shouldn’t that person focus his or her efforts toward meeting that goal?

All of us who teach organic chemistry know that the large majority of our 
students—90% or more, and including many chemistry majors—are inter-
ested primarily in medicine, biology, and other life sciences rather than in 
pure chemistry. But if we are primarily teaching future physicians, biologists, 
biochemists, and others in the life sciences (not to mention the occasional 
lawyer, politician, or business person), why do we continue to teach the way 
we do? Why do our textbooks and lectures spend so much time discussing 
details of topics that interest professional chemists but have no connection to 
biology? Wouldn’t the limited amount of time we have be better spent paying 
more attention to the organic chemistry of living organisms and less to the 
organic chemistry of the research laboratory? Wouldn’t it better serve our stu-
dents if we helped them reach their goals rather than reach goals we set for 
them? I believe so, and I have written this book, Organic Chemistry with Bio-
logical Applications, third edition, to encourage others who might also be 
thinking that the time has come to do things a bit differently.

This is, first and foremost, a textbook on organic chemistry. Look through 
it and you’ll find that almost all the standard topics are here, although the 
treatment of some has been attenuated to save space. Nevertheless, my guid-
ing principle in writing this text has been to put a greater emphasis on those 
organic reactions and topics that are relevant to biological chemistry than on 
those that are not.

Organic chemistry, which began historically as the chemistry of living 
organisms, is now shifting back in that direction, judging from the increasing 
amount of biologically oriented research done in many chemistry depart-
ments and from the renaming of many departments to include chemical biol-
ogy. Shouldn’t our teaching reflect that shift?

c	 organization of the text
Four distinct groups of chapters are apparent in this text. The first group 
(Chapters 1–6 and 10–11) covers the traditional principles of organic chemis-
try and spectroscopy that are essential for building further understanding.

xix
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xx PrefaCe

The second group (Chapters 7–9 and 12–18) covers the common organic 
reactions found in all texts. As each laboratory reaction is discussed, however, 
a biological example is also shown to make the material more interesting and 
meaningful to students. For instance, trans fatty acids are described at the 
same time that catalytic hydrogenation is discussed (Section 8-5); biological 
methylations with S-adenosylmethionine are covered with SN2 reactions 
(Section 12-11); and biological reductions with NADH are introduced along 
with laboratory NaBH4 reductions (Section 13-3).

The third group of chapters (19–24) is unique to this text in its depth of 
coverage. These chapters deal exclusively with the main classes of biomol-
ecules—amino acids and proteins, carbohydrates, lipids, and nucleic acids—
and show how thoroughly organic chemistry permeates biological chemistry. 
Following an introduction to each class, major metabolic pathways for that 
class are discussed from the perspective of mechanistic organic chemistry.

And finally, for those faculty who want additional coverage of natural 
products, polymers, and pericyclic reactions, the book ends with a fourth 
group of chapters (25–27) devoted to those topics. This final group is available 
in both electronic and hard-copy formats at the request of the adopter.

c	 What’s new
Text content has been revised substantially for this 3rd edition as a result of 
user feedback. Most noticeably, two new chapters have been made available 
for those who want them: Chapter 26 on Pericyclic Reactions and Chapter 
27 on Synthetic Polymers. Other changes include:

• Every chapter ends with a brief Something Extra essay that has been repo-
sitioned to follow immediately after the last text section where it is more 
likely to be noticed and read.

• The problems at the ends of chapters are now organized by topic to make 
it easier for students to find questions on specific subjects.

• New problems have been added in every chapter, 164 in all.
• Text references to all numbered fiGUres and taBles are called out in color 

to help students move more easily between text and art.
• All figure captions have a boldfaced title, and the captions themselves 

use colored text to make it easier to focus on specific features in the fig-
ure art.

new topics in this 3rd edition include:
• A new Something Extra, “Organic Foods: Risk versus Benefit,” in Chapter 1
• A new Something Extra, “Alkaloids: From Cocaine to Dental Anesthet-

ics,” in Chapter 2
• New coverage of bridged bicyclic molecules in Section 4-9
• New coverage of mercury-catalyzed alkyne hydration in Section 8-15
• New coverage of aromatic fluorination and fluorinated drugs in Section 9-6
• New coverage of alcohol to alkyl fluoride conversions in Section 12-3
• A new Section 12-5, “Organometallic Coupling Reactions,” covering both 

organocopper reactions and the palladium-catalyzed Suzuki–Miyaura 
reaction
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• A new Something Extra, “Naturally Occurring Organohalides,” in Chap-
ter 12

• New coverage of epoxide cleavage by nucleophiles in Section 13-10
• A new Section 13-11, “Crown Ethers and Ionophores”
• New coverage of hydrates of a-keto acids in Section 14-5
• A new Something Extra, “Barbiturates,” in Chapter 17
• Threonine catabolism deleted from Section 20-4
• New coverage of Kiliani–Fischer carbohydrate chain extension and Wohl 

degradation in Section 21-6
• A new Section 23-7, “Prostaglandins and Other Eicosanoids”
• A new Something Extra, “Statin Drugs,” in Chapter 23
• A new electronic Chapter 26, “Orbitals and Organic Chemistry: Pericyclic 

Reactions”
• A new electronic Chapter 27, “Synthetic Polymers”

I believe that there is more than enough standard organic chemistry in this 
book, and that the coverage of biological chemistry far surpasses that found in 
any other text. My hope is that all the students we teach, including those who 
worry about medical school, will come to agree that there is also logic and 
beauty here.

c	 features

reaction Mechanisms
The innovative vertical presentation of reaction mechanisms that has become 
a hallmark of all my texts is retained in Organic Chemistry with Biological 
Applications, third edition. Mechanisms in this format have the reaction steps 
printed vertically, while the changes taking place in each step are explained 
next to the reaction arrows. With this format, students can see what is occur-
ring at each step in a reaction without having to jump back and forth between 
structures and text. See Figure 14.4 for a chemical example and Figure 22.8 for 
a biological example.

Visualization of Biological reactions
One of the most important goals of this book is to demystify biological 
chemistry—to show students how the mechanisms of biological reactions 
are the same as those of laboratory organic reactions. Toward this end, and 
to let students visualize more easily the changes that occur during reactions 
of large biomolecules, I use an innovative method for focusing attention on 
the reacting parts in large molecules by “ghosting” the nonreacting parts. 
See Figure 13.4 for an example.

other features
• “Why do we have to learn this?” I’ve been asked this question by students 

so many times that I thought I should answer it in writing. Thus, every 
chapter begins with a short introduction called “Why This Chapter?” that 
provides an up-front answer to the question, explaining why the material 
about to be covered is important and how the organic chemistry in each 
chapter relates to biological chemistry.
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• Worked Examples in each chapter are titled to give students a frame of 
reference. Each Worked Example includes a Strategy and worked-out 
Solution, followed by Problems for students to try on their own.

• A Something Extra is provided in each chapter following the final text 
section to relate real-world concepts to students’ lives. New topics in this 
edition include Organic Foods: Risk versus Benefit (Chapter 1), Alkaloids: 
From Cocaine to Dental Anesthetics (Chapter 2), Naturally Occurring 
Organohalides (Chapter 12), Barbiturates (Chapter 17), and Statin Drugs 
(Chapter 23).

• Visualizing Chemistry problems at the end of each chapter offer students 
an opportunity to see chemistry in a different way by visualizing whole 
molecules rather than simply interpreting structural formulas.

• The Summary and Key Word list at the end of each chapter helps students 
focus on the key concepts in that chapter.

• The Summary of Reactions at the end of specific chapters brings together 
the key reactions from those chapters into a single complete list.

• An overview entitled “A Preview of Carbonyl Chemistry” following Chap-
ter 13 highlights the idea that studying organic chemistry involves both 
summarizing past ideas and looking ahead to new ones.

• Current IUPAC nomenclature rules are used in this text. Recognizing that 
these rules have not been universally adopted in the United States, the 
small differences between new and old rules are also discussed.

c	 alternate edition

Hybrid version with access (24 months) to oWlv2 with 
Mindtap reader isBn: 978-1-285-86784-7
A briefer, paperbound version of Organic Chemistry with Biological Applica-
tions, third edition, does not contain the end-of-chapter problems, which can 
be assigned in OWL, the online homework and learning system for this book. 
Access to OWLv2 and MindTap Reader eBook is included with the Hybrid 
version. MindTap Reader is the full version of the text, with all end-of-chapter 
questions and problem sets.

c	 supporting Materials for students and instructors
Please visit www.cengage.com/chemistry/mcmurry/ocba3e for information 
about student and instructor resources for this text.
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Structure	and	Bonding

Why	thiS
ChaPter?  We’ll ease into the study of organic chemistry by first review-

ing some ideas about atoms, bonds, and molecular geometry 
that you may recall from your general chemistry course. Much 

of the material in this chapter and the next is likely to be familiar to you, but 
it’s nevertheless a good idea to make sure you understand it before going on.

A scientific revolution is now taking place—a revolution that will give us 
safer and more effective medicines, cure our genetic diseases, increase our 
life spans, and improve the quality of our lives. The revolution is based in 
understanding the structure, regulation, and function of the approximately 
21,000 genes in the human body, and it relies on organic chemistry as the 
enabling science. It is our fundamental chemical understanding of biological 
processes at the molecular level that has made the revolution possible and 
that continues to drive it. Anyone who wants to understand or be a part of the 
remarkable advances now occurring in medicine and the biological sciences 
must first understand organic chemistry.

As an example of how organic and biological chemistry together are 
affecting modern medicine, look at coronary heart disease—the buildup of 
cholesterol-containing plaques on the walls of arteries, leading to restricted 
blood flow and eventual heart attack. Coronary heart disease is the leading 
cause of death for both men and women older than age 20, and it’s estimated 
that up to one-third of women and one-half of men will develop the disease 
at some point in their lives.

The onset of coronary heart disease is directly correlated with blood cho-
lesterol levels, and the first step in disease prevention is to lower those levels. 
It turns out that only about 25% of our blood cholesterol comes from what we 
eat; the remaining 75% (about 1000 mg each day) is made, or biosynthesized, 
by our bodies from dietary fats and carbohydrates. Thus, any effective plan for 

A	model	of	the	enzyme	
HMG-CoA	reductase,	
which	catalyzes	a	crucial	
step	in	the	body’s	
synthesis	of	cholesterol.

Unless otherwise noted, all content on this page is © Cengage Learning.
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lowering our cholesterol level means limiting the amount that our bodies bio-
synthesize, which in turn means understanding and controlling the chemical 
reactions that make up the metabolic pathway for cholesterol biosynthesis.

Now look at FigUre	1.1. Although the figure probably looks unintelligible 
at this point, don’t worry; before long it will make perfectly good sense. What’s 
shown in Figure 1.1 is the biological conversion of a compound called 
3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) to mevalonate, a crucial 
step in the pathway by which our bodies synthesize cholesterol. Also shown 
in the figure is an X-ray crystal structure of the active site in the HMG-CoA 
reductase enzyme that catalyzes the reaction, along with a molecule of the 
drug atorvastatin (sold under the trade name Lipitor), which binds to the 
enzyme and stops it from functioning. With the enzyme thus inactivated, cho-
lesterol biosynthesis is prevented.
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Atorvastatin is one of a widely prescribed class of drugs called statins, 
which reduce a person’s risk of coronary heart disease by lowering the level of 
cholesterol in his or her blood. Taken together, the statins—atorvastatin (Lipi-
tor), simvastatin (Zocor), rosuvastatin (Crestor), pravastatin (Pravachol), lova-
statin (Mevacor), and several others—are the most widely prescribed drugs in 
the world, with global sales of $29 billion annually.

The statins function by blocking the HMG-CoA reductase enzyme and 
preventing it from converting HMG-CoA to mevalonate, thereby limiting the 
body’s biosynthesis of cholesterol. As a result, blood cholesterol levels drop 
and coronary heart disease becomes less likely. It sounds simple, but it would 

FigUre	1.1	 	how	does	
atorvastatin	control	
cholesterol	biosynthesis?	
The	metabolic	conversion	of	
3-hydroxy-3-methylglutaryl	
coenzyme	A	(HMG-CoA)	to	
mevalonate	is	a	crucial	step	
in	the	body’s	pathway	for	
biosynthesizing	cholesterol.	
An	X-ray	crystal	structure	of	
the	active	site	in	the	HMG-
CoA	reductase	enzyme	that	
catalyzes	the	reaction	is	
shown,	along	with	a	molecule	
of	atorvastatin	(Lipitor)	that	
is	bound	in	the	active	site	
and	stops	the	enzyme	from	
functioning.	With	the	enzyme	
thus	inactivated,	cholesterol	
biosynthesis	is	prevented.
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be impossible without detailed knowledge of the steps in the pathway for 
cholesterol biosynthesis, the enzymes that catalyze those steps, and how pre-
cisely shaped organic molecules can be designed to block those steps. Organic 
chemistry is what makes it all happen.

Historically, the term organic chemistry dates to the late 1700s, when it 
was used to mean the chemistry of compounds found in living organisms. 
Little was known about chemistry at that time, and the behavior of the 
“organic” substances isolated from plants and animals seemed different from 
that of the “inorganic” substances found in minerals. Organic compounds 
were generally low-melting solids and were usually more difficult to isolate, 
purify, and work with than high-melting inorganic compounds. By the mid-
1800s, however, it was clear that there was no fundamental difference between 
organic and inorganic compounds: the same principles explain the behaviors 
of all substances, regardless of origin or complexity. The only distinguishing 
characteristic of organic chemicals is that all contain the element carbon.

But why is carbon special? Why, of the more than 70 million presently 
known chemical compounds, do more than 99% of them contain carbon? The 
answers to these questions come from carbon’s electronic structure and its con-
sequent position in the periodic table (FigUre	 1.2). As a group 4A element, 
carbon can share four valence electrons and form four strong covalent bonds. 
Furthermore, carbon atoms can bond to one another, forming long chains and 
rings. Carbon, alone of all elements, is able to form an immense diversity of 
compounds, from the simple to the staggeringly complex—from methane, with 
one carbon atom, to DNA, which can have more than 100 million carbons.
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Not all carbon compounds are derived from living organisms of course. 
Modern chemists have developed a remarkably sophisticated ability to design 
and synthesize new organic compounds in the laboratory—medicines, dyes, 
polymers, and a host of other substances. Organic chemistry touches the lives 
of everyone; its study can be a fascinating undertaking.

	 1-1	 atomic	Structure:	the	nucleus
As you might remember from your general chemistry course, an atom consists 
of a dense, positively charged nucleus surrounded at a relatively large dis-
tance by negatively charged electrons (FigUre	 1.3). The nucleus consists 

FigUre	1.2	 elements	
commonly	found	in	organic	
compounds.	Carbon,	
hydrogen,	and	other	elements	
commonly	found	in	organic	
compounds	are	shown	in	
the	colors	typically	used	to	
represent	them.
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of subatomic particles called neutrons, which are electrically neutral, and 
protons, which are positively charged. Because an atom is neutral overall, the 
number of positive protons in the nucleus and the number of negative elec-
trons surrounding the nucleus are the same.

Although extremely small—about 10214 to 10215 meter (m) in diameter—
the nucleus nevertheless contains essentially all the mass of the atom. Elec-
trons have negligible mass and circulate around the nucleus at a distance of 
approximately 10210 m. Thus, the diameter of a typical atom is about 
2 3 10210 m, or 200 picometers (pm), where 1 pm 5 10212 m. To give you an 
idea of how small this is, a thin pencil line is about 3 million carbon atoms 
wide. (Many organic chemists and biochemists, particularly those in the 
United States, still use the unit angstrom (Å) to express atomic distances, 
where 1 Å 5 100 pm 5 10210 m, but we’ll stay with the SI unit picometer in 
this book.)

Nucleus (protons + neutrons)

Volume around nucleus
occupied by orbiting electrons

A specific atom is described by its atomic number (Z), which gives the 
number of protons (or electrons) it contains, and its mass number (A), which 
gives the total number of protons plus neutrons in its nucleus. All the atoms 
of a given element have the same atomic number—1 for hydrogen, 6 for carbon, 
15 for phosphorus, and so on—but they can have different mass numbers 
depending on how many neutrons they contain. Atoms with the same atomic 
number but different mass numbers are called isotopes. The weighted average 
mass in unified atomic mass units (u) of an element’s naturally occurring iso-
topes is called the element’s atomic weight—1.008 u for hydrogen, 12.011 u 
for carbon, 30.974 u for phosphorus, and so on.

	 1-2	 atomic	Structure:	orbitals
How are the electrons distributed in an atom? According to the quantum 
mechanical model, the behavior of a specific electron in an atom can be 
described by a mathematical expression called a wave equation—the same 
sort of expression used to describe the motion of waves in a fluid. The solu-
tion to a wave equation is called a wave function, or orbital, and is denoted by 
the Greek letter psi, c.

When the square of the wave function, c2, is plotted in three-dimensional 
space, an orbital describes the volume of space around a nucleus that an elec-
tron is most likely to occupy. You might therefore think of an orbital as looking 
like a photograph of the electron taken at a slow shutter speed. In such a 
photo, the orbital would appear as a blurry cloud, indicating the region of 
space around the nucleus where the electron has been. This electron cloud 
doesn’t have a sharp boundary, but for practical purposes we can set the limits 

FigUre	1.3	 	Schematic	view	of	
an	atom.	The	dense,	positively	
charged	nucleus	contains	most	
of	the	atom’s	mass	and	is	
surrounded	by	negatively	charged	
electrons.	The	three-dimensional	
view	on	the	right	shows	calculated	
electron-density	surfaces.	Electron	
density	increases	steadily	toward	
the	nucleus	and	is	40	times	
greater	at	the	blue	solid	surface	
than	at	the	gray	mesh	surface.
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by saying that an orbital represents the space where an electron spends 90% 
to 95% of its time.

What do orbitals look like? There are four different kinds of orbitals, 
denoted s, p, d, and f, each with a different shape. Of the four, we’ll be con-
cerned primarily with s and p orbitals because these are the most common in 
organic and biological chemistry. An s orbital is spherical, with the nucleus at 
its center; a p orbital is dumbbell-shaped; and four of the five d orbitals are 
cloverleaf-shaped, as shown in FigUre	1.4. The fifth d orbital is shaped like an 
elongated dumbbell with a doughnut around its middle.

An s orbital A p orbital A d orbital

The orbitals in an atom are organized into different layers around the 
nucleus, or electron shells, of successively larger size and energy. Different 
shells contain different numbers and kinds of orbitals, and each orbital within 
a shell can be occupied by a maximum of two electrons. The first shell con-
tains only a single s orbital, denoted 1s, and thus holds only 2 electrons. The 
second shell contains one 2s orbital and three 2p orbitals and thus holds a 
total of 8 electrons. The third shell contains a 3s orbital, three 3p orbitals, and 
five 3d orbitals, for a total capacity of 18 electrons. These orbital groupings 
and their energy levels are shown in FigUre	1.5.

3rd shell
(capacity—18 electrons)

2nd shell
(capacity—8 electrons)

1st shell
(capacity—2 electrons)

E
n

e
rg

y

3d
3p

2p

3s

2s

1s

The three different p orbitals within a given shell are oriented in space 
along mutually perpendicular directions, denoted px, py, and pz. As shown in 
FigUre	1.6, the two lobes of each p orbital are separated by a region of zero 
electron density called a node. Furthermore, the two orbital regions separated 
by the node have different algebraic signs, 1 and 2, in the wave function, as 
represented by the different colors in Figure 1.6. As we’ll see in Section 1-11, 
the algebraic signs of the different orbital lobes have important consequences 
with respect to chemical bonding and chemical reactivity.

FigUre	1.4	 	representations	of	
s,	p,	and	d	orbitals.	An	s	orbital	is	
spherical,	a	p	orbital	is	dumbbell-
shaped,	and	four	of	the	five	d	
orbitals	are	cloverleaf-shaped.	
Different	lobes	of	p	orbitals	are	
often	drawn	for	convenience	as	
teardrops,	but	their	true	shape	is	
more	like	that	of	a	doorknob,	as	
indicated.

FigUre	1.5	 	energy	levels	
of	electrons	in	an	atom.	The	
first	shell	holds	a	maximum	of	
2	electrons	in	one	1s	orbital;	the	
second	shell	holds	a	maximum	
of	8	electrons	in	one	2s	and	three	
2p	orbitals;	the	third	shell	holds	a	
maximum	of	18	electrons	in	one	
3s,	three	3p,	and	five	3d	orbitals;	
and	so	on.	The	two	electrons	in	
each	orbital	are	represented	by	up	
and	down	arrows,	hg.	Although	
not	shown,	the	energy	level	of	the	
4s	orbital	falls	between	3p	and	3d.
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	 1-3	 atomic	Structure:	electron	Configurations
The lowest-energy arrangement, or ground-state electron configuration, of an 
atom is a listing of the orbitals occupied by its electrons. We can predict this 
arrangement by following three rules:

rule	1

The lowest-energy orbitals fill up first, according to the order 1s  n  2s  n 2p n 
3s  n  3p  n  4s  n  3d, a statement called the aufbau principle. Note that the 
4s orbital lies between the 3p and 3d orbitals in energy.

rule	2

Electrons act in some ways as if they were spinning around an axis, in some-
what the same way that the earth spins. This spin can have two orientations, 
denoted as up (h) and down (g). Only two electrons can occupy an orbital, 
and they must be of opposite spin, a statement called the Pauli exclusion 
principle.

rule	3

If two or more empty orbitals of equal energy are available, one electron occu-
pies each with spins parallel until all orbitals are half-full, a statement called 
Hund’s rule.

Some examples of how these rules apply are shown in taBle	1.1. Hydrogen, 
for instance, has only one electron, which must occupy the lowest-energy 
orbital. Thus, hydrogen has a 1s ground-state configuration. Carbon has six 
electrons and the ground-state configuration 1s2 2s2 2px

1 2py
1, and so forth. 

Note that a superscript is used to represent the number of electrons in a par-
ticular orbital.

taBle	1.1	 ground-State	electron	Configurations	of	Some	elements

Element
Atomic 
number Configuration Element

Atomic 
number Configuration

Hydrogen 1 1s Phosphorus 15

3s

2s

1s

3p

2pCarbon 6

2s

1s

2p

FigUre	1.6	 	Shapes	of	the	
2p	orbitals.	Each	of	the	three	
mutually	perpendicular,	dumbbell-
shaped	orbitals	has	two	lobes	
separated	by	a	node.	The	two	
lobes	have	different	algebraic	
signs	in	the	corresponding	wave	
function,	as	indicated	by	the	
different	colors.
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P r o B l e m 	 1 . 1

Give the ground-state electron configuration for each of the following elements:
(a) Oxygen (b) Phosphorus (c) Sulfur

P r o B l e m 	 1 . 2

How many electrons does each of the following biological trace elements have 
in its outermost electron shell?
(a) Magnesium (b) Cobalt (c) Selenium

	 1-4	 Development	of	Chemical	Bonding	theory
By the mid-1800s, the new science of chemistry was developing rapidly and 
chemists had begun to probe the forces holding atoms together in compounds. 
In 1858, August Kekulé and Archibald Couper independently proposed that, 
in all its compounds, carbon is tetravalent—it always forms four bonds when 
it joins other elements to form stable compounds. Furthermore, said Kekulé, 
carbon atoms can bond to one another to form extended chains of linked atoms.

Shortly after the tetravalent nature of carbon was proposed, extensions to 
the Kekulé–Couper theory were made when the possibility of multiple bond-
ing between atoms was suggested. Emil Erlenmeyer proposed a carbon–carbon 
triple bond for acetylene, and Alexander Crum Brown proposed a carbon–
carbon double bond for ethylene. In 1865, Kekulé provided another major 
advance when he suggested that carbon chains can double back on themselves 
to form rings of atoms.

Although Kekulé and Couper were correct in describing the tetravalent 
nature of carbon, chemistry was still viewed in a two-dimensional way until 
1874. In that year, Jacobus van’t Hoff and Joseph Le Bel added a third dimen-
sion to our ideas about organic compounds. They proposed that the four bonds 
of carbon are not oriented randomly but have specific spatial directions. 
Van’t Hoff went even further and suggested that the four atoms to which 
carbon is bonded sit at the corners of a regular tetrahedron, with carbon in the 
center.

A representation of a tetrahedral carbon atom is shown in FigUre	1.7. Note 
the conventions used to show three-dimensionality: solid lines represent 
bonds in the plane of the page, the heavy wedged line represents a bond com-
ing out of the page toward the viewer, and the dashed line represents a bond 
receding back behind the page away from the viewer. These representations 
will be used throughout this text.

H

HH

H

Bond receding
into page

Bonds in plane
of page

Bond coming
out of plane

A tetrahedral 
carbon atom

A regular
tetrahedron

C

FigUre	1.7	 	a	representation	of	
van’t	hoff ’s	tetrahedral	carbon	
atom.	The	solid	lines	represent	
bonds	in	the	plane	of	the	paper,	
the	heavy	wedged	line	represents	
a	bond	coming	out	of	the	plane	
of	the	page,	and	the	dashed	line	
represents	a	bond	going	back	
behind	the	plane	of	the	page.
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Why, though, do atoms bond together, and how can bonds be described 
electronically? The why question is relatively easy to answer: atoms bond 
together because the compound that results is more stable and lower in energy 
than the separate atoms. Energy (usually as heat) is always released and flows 
out of the chemical system when a chemical bond forms. Conversely, energy 
must always be put into the system to break a chemical bond. Making bonds 
always releases energy, and breaking bonds always absorbs energy. The how 
question is more difficult. To answer it, we need to know more about the elec-
tronic properties of atoms.

We know through observation that eight electrons (an electron octet) in an 
atom’s outermost shell, or valence shell, impart special stability to the noble-
gas elements in group 8A of the periodic table: Ne (2 1 8); Ar (2 1 8 1 8); 
Kr (2 1 8 1 18 1 8). We also know that the chemistry of main-group elements 
is governed by their tendency to take on the electron configuration of the near-
est noble gas. The alkali metals in group 1A, for example, achieve a noble-gas 
configuration by losing the single s electron from their valence shell to form a 
cation, while the halogens in group 7A achieve a noble-gas configuration by 
gaining a p electron to fill their valence shell and form an anion. The resultant 
ions are held together in compounds like Na1 Cl2 by an electrostatic attrac-
tion of unlike charges that we call an ionic bond.

But how do elements closer to the middle of the periodic table form bonds? 
Look at methane, CH4, the main constituent of natural gas, for example. The 
bonding in methane is not ionic because it would take too much energy for 
carbon (1s2 2s2 2p2) to either gain or lose four electrons to achieve a noble-gas 
configuration. Instead, carbon bonds to other atoms, not by gaining or losing 
electrons, but by sharing them. Such a shared-electron bond, first proposed in 
1916 by G. N. Lewis, is called a covalent bond. The neutral collection of atoms 
held together by covalent bonds is called a molecule.

A simple way of indicating the covalent bonds in molecules is to use what 
are called Lewis structures, or electron-dot structures, in which the valence-
shell electrons of an atom are represented as dots. Thus, hydrogen has one dot 
representing its 1s electron, carbon has four dots (2s2 2p2), oxygen has six dots 
(2s2 2p4), and so on. A stable molecule results whenever a noble-gas configu-
ration is achieved for all the atoms—eight dots (an octet) for main-group atoms 
or two dots for hydrogen. Simpler still is the use of Kekulé structures, or line-
bond structures, in which two-electron covalent bonds are indicated as lines 
drawn between atoms.

C HH
H

H
CH
H

H
N HH
H

O HH O H

C HH

H

H

N HH

H

H O

Water
(H2O)

H CH

H

H

Methane
(CH4)

Electron-dot structures
(Lewis structures)

Line-bond structures
(Kekulé structures)

Ammonia
(NH3)

Methanol
(CH3OH)

O H

The number of covalent bonds an atom forms depends on how many addi-
tional valence electrons it needs to reach a noble-gas configuration. Hydrogen 
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has one valence electron (1s) and needs one more to reach the helium configu-
ration (1s2), so it forms one bond. Carbon has four valence electrons (2s2 2p2) 
and needs four more to reach the neon configuration (2s2 2p6), so it forms four 
bonds. Nitrogen has five valence electrons (2s2 2p3), needs three more, and 
forms three bonds; oxygen has six valence electrons (2s2 2p4), needs two more, 
and forms two bonds; and the halogens have seven valence electrons, need 
one more, and form one bond.

Four bonds Three bonds Two bondsOne bond One bond

Br

ClF

I
CH ON

Valence electrons that are not used for bonding are called lone-pair 
electrons, or nonbonding electrons. The nitrogen atom in ammonia (NH3), 
for instance, shares six valence electrons in three covalent bonds and has its 
remaining two valence electrons in a nonbonding lone pair. As a time-
saving shorthand, nonbonding electrons are often omitted when drawing 
line-bond structures, but you still have to keep them in mind since they’re 
often crucial in chemical reactions.

Nonbonding,
lone-pair electrons

N HH
H

N HHor or

H

N HH

H

Ammonia

Predicting	the	number	of	Bonds	Formed	by	atoms	in	molecules

How many hydrogen atoms does phosphorus bond to in phosphine, PH??

S t r a t e g y

Identify the periodic group of phosphorus, and tell from that how many elec-
trons (bonds) are needed to make an octet.

S o l u t i o n

Phosphorus, like nitrogen, is in group 5A of the periodic table and has five 
valence electrons. It thus needs to share three more electrons to make an octet 
and therefore bonds to three hydrogen atoms, giving PH3.

Drawing	electron-Dot	and	line-Bond	Structures

Draw both electron-dot and line-bond structures for chloromethane, CH3Cl.

S t r a t e g y

Remember that a bond—that is, a pair of shared electrons—is represented as a 
line between atoms.

W O R K E D  E X A M P L E  1 . 1 

W O R K E D  E X A M P L E  1 . 2

Unless otherwise noted, all content on this page is © Cengage Learning.

	 1-4	 development	of	chemical	Bonding	theory	 9

42912_01_Ch01_0001-0027h.indd   9 1/10/14   11:40 AM

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.




