John McMurry

Organic Chemistry with Biological Applications

Structures of Common Coenzymes

The reactive parts of the molecules are darkened, while nonreactive parts are ghosted.

Adenosine triphosphate-ATP (phosphorylation)

Coenzyme A (acyl transfer)

Nicotinamide adenine dinucleotide-NAD⁺ (oxidation/reduction) (NADP⁺)

Flavin adenine dinucleotide-FAD (oxidation/reduction)

Unless otherwise noted, all content on this page is C Cengage Learning.

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tetrahydrofolate (transfer of C1 units)

S-Adenosylmethionine (methyl transfer)

Lipoic acid (acyl transfer)

CH₂OPO₃²⁻

CHO

ΟН

Biotin (carboxylation)

ĊH₃

⁺N H[−]N

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). nt does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Department of Chemistry and Chemical Biology

John McMurry Professor of Chemistry and Chemical Biology

Baker Laboratory Ithaca, New York 14853-4203

Dear Colleague:

All of us who teach organic chemistry know that most of the students in our courses, even the chemistry majors, are interested primarily in the life sciences rather than in pure chemistry. Because we are teaching so many future biologists, biochemists, and doctors rather than younger versions of ourselves, more and more of us are questioning why we continue to teach the way we do. Why do we spend so much time discussing the details of reactions that are of interest to research chemists but have little connection to biology? Why don't we instead spend more time discussing the organic chemistry of living organisms?

There is still much to be said for teaching organic chemistry in the traditional way, but it is also true that until now there has been no real alternative for those instructors who want to teach somewhat differently. And that is why I wrote Organic Chemistry with Biological Applications 3e. As chemical biology continues to gain in prominence, I suspect that more

and more faculty will be changing their teaching accordingly.

Make no mistake: this is still a textbook on organic chemistry. But my guiding principle in deciding what to include and what to leave out has been to focus almost exclusively on those reactions that have a direct counterpart in biological chemistry. The space saved by leaving out nonbiological reactions has been put to good use, for almost every reaction discussed is followed by a biological example and approximately 25% of the book is devoted entirely to biomolecules and the organic chemistry of their biotransformations. In addition, Organic Chemistry with Biological Applications 3e is nearly 200 pages shorter than standard texts, making it possible for faculty to cover the entire book in a typical two-

semester course.

Organic Chemistry with Biological Applications 3e is different from any other text; I believe that it is ideal for today's students.

Sincerely,

John McMurry

Cornell University is an equal opportunity, affirmative action educator and employer

All royalties from Organic Chemistry with Biological Applications will be donated to the Cystic Fibrosis (CF) Foundation. This book and donation are dedicated to the author's eldest son and to the thousands of others who daily fight this disease. To learn more about CF and the programs and services provided by the CF Foundation, please visit http://www.cff.org.

Organic Chemistry

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and or eChapter(s) a

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Organic Chemistry

CORNELL UNIVERSITY

Australia • Brazil • Mexico • Singapore • United Kingdom • United States

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and or eChapter(s) a

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous editions, changes to current editions, and alternate formats, please visit <u>www.cengage.com/highered</u> to search by ISBN#, author, title, or keyword for materials in your areas of interest.

CENGAGE Learning

Organic Chemistry with Biological Applications, 3e John McMurry

Product Director: Mary Finch Product Manager: Maureen Rosener Content Developer: Sandra Kiselica Content Coordinator: Elizabeth Woods Product Assistant: Karolina Kiwak Media Developer: Lisa Weber Marketing Manager: Julie Schuster Content Project Manager: Teresa L. Trego Art Director: Maria Epes Manufacturing Planner: Judy Inouye

Rights Acquisitions Specialist: Dean Dauphinais

Production Service: Graphic World Inc.

Photo Researcher: PreMedia Global

Text Researcher: PreMedia Global Copy Editor: Graphic World Inc.

Illustrator: Graphic World Inc.

Text Designer: Parallelogram Graphics

Cover Designer: Cheryl Carrington

Cover Image: Vickie Lewis/National Geographic Creative

Compositor: Graphic World Inc.

We gratefully acknowledge SDBS for providing data for figures on the following pages: 331, 335, 339, 341, 475, 476, 523, 524, 549, 672; and data for the spectra in problems on pages 349d, 349g, 482i, and 598g (http://riodb01.ibase.aist .go.jp/sdbs/, National Institute of Advanced Industrial Science and Technology, 8/26/05, 2/7/09, 2/13/09, 3/10/09).

© 2015, 2011 Cengage Learning

WCN: 02-200-203

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at Cengage Learning Customer & Sales Support, 1-800-354-9706.

For permission to use material from this text or product, submit all requests online at **www.cengage.com/permissions.** Further permissions questions can be e-mailed to **permissionrequest@cengage.com**.

Library of Congress Control Number: 2013956751 ISBN-13: 978-1-285-84291-2 ISBN-10: 1-285-84291-X

Cengage Learning

200 First Stamford Place, 4th Floor Stamford, CT 06902 USA

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at **www.cengage.com/global**.

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Cengage Learning Solutions, visit **www.cengage.com**.

Purchase any of our products at your local college store or at our preferred online store **www.cengagebrain.com**.

Printed in the United States of America 1 2 3 4 5 6 7 18 17 16 15 14

BRIEF CONTENTS

1	Structure and Bonding	1
2	Polar Covalent Bonds; Acids and Bases	28
3	Organic Compounds: Alkanes and Their Stereochemistry	59
4	Organic Compounds: Cycloalkanes and Their Stereochemistry	87
5	Stereochemistry at Tetrahedral Centers	113
6	An Overview of Organic Reactions	146
7	Alkenes and Alkynes	179
8	Reactions of Alkenes and Alkynes	212
9	Aromatic Compounds	265
10	Structure Determination: Mass Spectrometry, Infrared Spectroscopy, and Ultraviolet	
	Spectroscopy	319
11	Structure Determination: Nuclear Magnetic Resonance Spectroscopy	350
12	Organohalides: Nucleophilic Substitutions and Eliminations	382
13	Alcohols, Phenols, and Thiols; Ethers and Sulfides	435
**	A Preview of Carbonyl Chemistry	483
14	Aldehydes and Ketones: Nucleophilic Addition Reactions	492
15	Carboxylic Acids and Nitriles	530
16	Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions	555
17	Carbonyl Alpha-Substitution and Condensation Reactions	599
18	Amines and Heterocycles	644
19	Biomolecules: Amino Acids, Peptides, and Proteins	678
20	Amino Acid Metabolism	714
21	Biomolecules: Carbohydrates	738
22	Carbohydrate Metabolism	773
23	Biomolecules: Lipids and Their Metabolism	805
24	Biomolecules: Nucleic Acids and Their Metabolism	852
To acc www.	cess the following online-only chapters, enter ISBN: 978-1-285-84291-2 at cengagebrain.com and visit this book's companion website.	
e25	Secondary Metabolites: An Introduction to Natural Products Chemistry	877
e26	Orbitals and Organic Chemistry: Pericyclic Reactions	905
e27	Synthetic Polymers	925
	v	

DETAILED CONTENTS

Structure and Bonding 1

1-1	Atomic Structure: The Nucleus	3
1-2	Atomic Structure: Orbitals	4
1-3	Atomic Structure: Electron Configurations	6
]-4	Development of Chemical Bonding Theory	7
1-5	Describing Chemical Bonds: Valence Bond Theory	10
1-6	sp^3 Hybrid Orbitals and the Structure of Methane	12
1-7	sp^3 Hybrid Orbitals and the Structure of Ethane	13
1-8	sp ² Hybrid Orbitals and the Structure of Ethylene	14
1-9	sp Hybrid Orbitals and the Structure of Acetylene	16
1-10	Hybridization of Nitrogen, Oxygen, Phosphorus, and Sulfur	18
1-11	Describing Chemical Bonds: Molecular Orbital Theory	20
1-12	Drawing Chemical Structures	21
	SOMETHING EXTRA Organic Foods: Risk versus Benefit	24

ent does not ma

1

Polar Covalent Bonds; Acids and Bases 28

2-1	Polar Covalent Bonds: Electronegativity	28
2-2	Polar Covalent Bonds: Dipole Moments	31
2-3	Formal Charges	33
2-4	Resonance	36
2-5	Rules for Resonance Forms	37
2-6	Drawing Resonance Forms	39
2-7	Acids and Bases: The Brønsted-Lowry Definition	42
2-8	Acid and Base Strength	44
2-9	Predicting Acid-Base Reactions from pK _a Values	46
2-10	Organic Acids and Organic Bases	47
2-11	Acids and Bases: The Lewis Definition	50
2-12	Noncovalent Interactions between Molecules	54
	SOMETHING EXTRA Alkaloids: From Cocaine	
	to Dental Anesthetics	56

vi

3 Organic Compounds: Alkanes and Their Stereochemistry | 59

3-1	Functional Groups	59
3-2	Alkanes and Alkane Isomers	66
3-3	Alkyl Groups	69
3-4	Naming Alkanes	72
3-5	Properties of Alkanes	78
3-6	Conformations of Ethane	79
3-7	Conformations of Other Alkanes	81
	SOMETHING EXTRA Gasoline	85

Organic Compounds: Cycloalkanes and Their Stereochemistry 87

4-1	Naming Cycloalkanes	88
4-2	Cis-Trans Isomerism in Cycloalkanes	91
4-3	Stability of Cycloalkanes: Ring Strain	93
4-4	Conformations of Cycloalkanes	95
4-5	Conformations of Cyclohexane	97
4-6	Axial and Equatorial Bonds in Cyclohexane	99
4-7	Conformations of Monosubstituted Cyclohexanes	102
4-8	Conformations of Disubstituted Cyclohexanes	105
4-9	Conformations of Polycyclic Molecules	108
	SOMETHING EXTRA Molecular Mechanics	111

5

Stereochemistry at Tetrahedral Centers | 113

5-1	Enantiomers and the Tetrahedral Carbon	114
5-2	The Reason for Handedness in Molecules: Chirality	115
5-3	Optical Activity	119
5-4	Pasteur's Discovery of Enantiomers	121
5-5	Sequence Rules for Specifying Configuration	122

5-6	Diastereomers	127
5-7	Meso Compounds	130
5-8	Racemic Mixtures and the Resolution of Enantiomers	132
5-9	A Review of Isomerism	135
5-10	Chirality at Nitrogen, Phosphorus, and Sulfur	137
5-11	Prochirality	138
5-12	Chirality in Nature and Chiral Environments	141
	SOMETHING EXTRA Chiral Drugs	143

An Overview of Organic Reactions | 146

6-1	Kinds of Organic Reactions	146
6-2	How Organic Reactions Occur: Mechanisms	148
6-3	Radical Reactions	149
6-4	Polar Reactions	152
6-5	An Example of a Polar Reaction: Addition of H_2O to Ethylene	156
6-6	Using Curved Arrows in Polar Reaction Mechanisms	159
6-7	Describing a Reaction: Equilibria, Rates, and Energy Changes	162
6-8	Describing a Reaction: Bond Dissociation Energies	166
6-9	Describing a Reaction: Energy Diagrams and Transition States	168
6-10	Describing a Reaction: Intermediates	170
6-11	A Comparison between Biological Reactions and Laboratory Reactions	173
	SOMETHING EXTRA Where Do Drugs Come From?	176

Alkenes and Alkynes | 179 Calculating the Degree of Unsaturation 7-1 180 7-2 Naming Alkenes and Alkynes 183 7-3 Cis-Trans Isomerism in Alkenes 186 Alkene Stereochemistry and the *E*,*Z* Designation 7-4 188 Stability of Alkenes 7-5 191 7-6 Electrophilic Addition Reactions of Alkenes 195 Writing Organic Reactions 196 7-7 Orientation of Electrophilic Addition: Markovnikov's Rule 197 7-8 Carbocation Structure and Stability 201 7-9 The Hammond Postulate 203

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). and does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7-10	Evidence for the Mechanism of Electrophilic Additions:	
	Carbocation Rearrangements	206
	SOMETHING EXTRA Terpenes: Naturally Occurring Alkenes	209

Reactions of Alkenes and Alkynes 212

8-1	Preparing Alkenes: A Preview of Elimination Reactions	213
8-2	Halogenation of Alkenes	214
8-3	Halohydrins from Alkenes	217
8-4	Hydration of Alkenes	218
8-5	Reduction of Alkenes: Hydrogenation	223
8-6	Oxidation of Alkenes: Epoxidation	227
8-7	Oxidation of Alkenes: Hydroxylation	229
8-8	Oxidation of Alkenes: Cleavage to Carbonyl Compounds	231
8-9	Addition of Carbenes to Alkenes: Cyclopropane Synthesis	233
8-10	Radical Additions to Alkenes: Chain-Growth Polymers	235
8-11	Biological Additions of Radicals to Alkenes	240
8-12	Conjugated Dienes	241
8-13	Reactions of Conjugated Dienes	245
8-14	The Diels–Alder Cycloaddition Reaction	247
8-15	Reactions of Alkynes	253
	SOMETHING EXTRA Natural Rubber	258
	Learning Reactions	261

9

8

Aromatic Compounds 265

9-1	Naming Aromatic Compounds	266
9-2	Structure and Stability of Benzene	268
9-3	Aromaticity and the Hückel $4n + 2$ Rule	272
9-4	Aromatic Ions and Aromatic Heterocycles	274
9-5	Polycyclic Aromatic Compounds	279
9-6	Reactions of Aromatic Compounds: Electrophilic Substitution	281
9-7	Alkylation and Acylation of Aromatic Rings:	
	The Friedel-Crafts Reaction	289
9-8	Substituent Effects in Electrophilic Substitutions	295

9-9	Nucleophilic Aromatic Substitution	303
9-10	Oxidation and Reduction of Aromatic Compounds	306
9-11	An Introduction to Organic Synthesis: Polysubstituted Benzenes	308
	SOMETHING EXTRA Aspirin, NSAIDs, and COX-2 Inhibitors	314

10 Structure Determination: Mass Spectrometry, Infrared Spectroscopy, and Ultraviolet Spectroscopy | 319

10-1	Mass Spectrometry of Small Molecules: Magnetic-Sector Instruments	5 320
10-2	Interpreting Mass Spectra	321
10-3	Mass Spectrometry of Some Common Functional Groups	326
10-4	Mass Spectrometry in Biological Chemistry: Time-of-Flight (TOF)	
	Instruments	328
10-5	Spectroscopy and the Electromagnetic Spectrum	329
10-6	Infrared Spectroscopy	332
10-7	Interpreting Infrared Spectra	334
10-8	Infrared Spectra of Some Common Functional Groups	337
10-9	Ultraviolet Spectroscopy	342
10-10	Interpreting Ultraviolet Spectra: The Effect of Conjugation	345
10-11	Conjugation, Color, and the Chemistry of Vision	346
	SOMETHING EXTRA X-Ray Crystallography	348

Structure Determination: Nuclear Magnetic Resonance Spectroscopy 350

11-1	Nuclear Magnetic Resonance Spectroscopy	350
11-2	The Nature of NMR Absorptions	352
11-3	Chemical Shifts	355
11-4	¹³ C NMR Spectroscopy: Signal Averaging and FT-NMR	357
11-5	Characteristics of ¹³ C NMR Spectroscopy	358
11-6	DEPT ¹³ C NMR Spectroscopy	361
11-7	Uses of ¹³ C NMR Spectroscopy	364
11-8	¹ H NMR Spectroscopy and Proton Equivalence	365
11-9	Chemical Shifts in ¹ H NMR Spectroscopy	368

11-10	Integration of ¹ H NMR Absorptions: Proton Counting	370
11-11	Spin-Spin Splitting in ¹ H NMR Spectra	371
11-12	More Complex Spin–Spin Splitting Patterns	376
11-13	Uses of ¹ H NMR Spectroscopy	379
	SOMETHING EXTRA Magnetic Resonance Imaging (MRI)	380

12 Organohalides: Nucleophilic Substitutions and Eliminations 382

12-1	Names and Structures of Alkyl Halides	383
12-2	Preparing Alkyl Halides from Alkenes: Allylic Bromination	385
12-3	Preparing Alkyl Halides from Alcohols	390
12-4	Reactions of Alkyl Halides: Grignard Reagents	391
12-5	Organometallic Coupling Reactions	393
12-6	Discovery of the Nucleophilic Substitution Reaction	395
12-7	The S _N 2 Reaction	398
12-8	Characteristics of the S _N 2 Reaction	401
12-9	The S _N 1 Reaction	408
12-10	Characteristics of the S _N 1 Reaction	412
12-11	Biological Substitution Reactions	418
12-12	Elimination Reactions: Zaitsev's Rule	420
12-13	The E2 Reaction and the Deuterium Isotope Effect	422
12-14	The E1 and E1cB Reactions	427
12-15	Biological Elimination Reactions	428
12-16	A Summary of Reactivity: S_N 1, S_N 2, E1, E1cB, and E2	429
	SOMETHING EXTRA Naturally Occurring Organohalides	430

13

Alcohols, Phenols, and Thiols; Ethers and Sulfides 435

13-1	Naming Alcohols, Phenols, and Thiols	437
13-2	Properties of Alcohols, Phenols, and Thiols	439
13-3	Preparing Alcohols from Carbonyl Compounds	443
13-4	Reactions of Alcohols	452
13-5	Oxidation of Alcohols and Phenols	456

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13-6	Protection of Alcohols	460
13-7	Preparation and Reactions of Thiols	463
13-8	Ethers and Sulfides	464
13-9	Preparing Ethers	466
13-10	Reactions of Ethers	467
13-11	Crown Ethers and Ionophores	472
13-12	Preparation and Reactions of Sulfides	474
13-13	Spectroscopy of Alcohols, Phenols, and Ethers	475
	SOMETHING EXTRA Ethanol: Chemical, Drug, Poison	478

A Preview of Carbonyl Chemistry | 483

	Kinds of Carbonyl Compounds	483
	Nature of the Carbonyl Group	485
	General Reactions of Carbonyl Compounds	485
IV	Summary	491

Aldehydes and Ketones: Nucleophilic Addition Reactions | 492

14-1	Naming Aldehydes and Ketones	493
14-2	Preparing Aldehydes and Ketones	495
14-3	Oxidation of Aldehydes	497
14-4	Nucleophilic Addition Reactions of Aldehydes and Ketones	497
14-5	Nucleophilic Addition of H ₂ O: Hydration	501
14-6	Nucleophilic Addition of Hydride and Grignard Reagents: Alcohol	
	Formation	503
14-7	Nucleophilic Addition of Amines: Imine and Enamine Formation	505
14-8	Nucleophilic Addition of Alcohols: Acetal Formation	509
14-9	Nucleophilic Addition of Phosphorus Ylides: The Wittig Reaction	513
14-10	Biological Reductions	516
14-11	Conjugate Nucleophilic Addition to $lpha,eta$ -Unsaturated Aldehydes and	
	Ketones	518
14-12	Spectroscopy of Aldehydes and Ketones	522
	SOMETHING EXTRA Enantioselective Synthesis	526

Carboxylic Acids and Nitriles 530

15-1	Naming Carboxylic Acids and Nitriles	531
15-2	Structure and Properties of Carboxylic Acids	533
15-3	Biological Acids and the Henderson–Hasselbalch Equation	537
15-4	Substituent Effects on Acidity	538
15-5	Preparing Carboxylic Acids	540
15-6	Reactions of Carboxylic Acids: An Overview	543
15-7	Chemistry of Nitriles	543
15-8	Spectroscopy of Carboxylic Acids and Nitriles	548
	SOMETHING EXTRA Vitamin C	550

16 Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions | 555

16-1	Naming Carboxylic Acid Derivatives	556
16-2	Nucleophilic Acyl Substitution Reactions	559
16-3	Reactions of Carboxylic Acids	564
16-4	Reactions of Acid Halides	570
16-5	Reactions of Acid Anhydrides	576
16-6	Reactions of Esters	578
16-7	Reactions of Amides	584
16-8	Reactions of Thioesters and Acyl Phosphates:	
	Biological Carboxylic Acid Derivatives	587
16-9	Polyamides and Polyesters: Step-Growth Polymers	589
16-10	Spectroscopy of Carboxylic Acid Derivatives	592
	SOMETHING EXTRA β -Lactam Antibiotics	594

17 **Carbonyl Alpha-Substitution** and Condensation Reactions 599

17-1	Keto-Enol Tautomerism	600
17-2	Reactivity of Enols: α -Substitution Reactions	603
17-3	Alpha Bromination of Carboxylic Acids	606
17-4	Acidity of $lpha$ Hydrogen Atoms: Enolate Ion Formation	607

17-5	Alkylation of Enolate Ions	610
17-6	Carbonyl Condensations: The Aldol Reaction	620
17-7	Dehydration of Aldol Products	623
17-8	Intramolecular Aldol Reactions	626
17-9	The Claisen Condensation Reaction	627
17-10	Intramolecular Claisen Condensations: The Dieckmann Cyclization	629
17-11	Conjugate Carbonyl Additions: The Michael Reaction	632
17-12	Carbonyl Condensations with Enamines: The Stork Reaction	634
17-13	Biological Carbonyl Condensation Reactions	637
	SOMETHING EXTRA Barbiturates	639

18 Amines and Heterocycles | 644

18-1	Naming Amines	645
18-2	Properties of Amines	647
18-3	Basicity of Amines	649
18-4	Basicity of Arylamines	652
18-5	Biological Amines and the Henderson–Hasselbalch Equation	653
18-6	Synthesis of Amines	654
18-7	Reactions of Amines	659
18-8	Heterocyclic Amines	665
18-9	Fused-Ring Heterocycles	669
18-10	Spectroscopy of Amines	672
	SOMETHING EXTRA Green Chemistry	674

19

ent does not ma

Biomolecules: Amino Acids, Peptides, and Proteins 678

19-1	Structures of Amino Acids	679
19-2	Amino Acids and the Henderson–Hasselbalch Equation:	
	Isoelectric Points	684
19-3	Synthesis of Amino Acids	687
19-4	Peptides and Proteins	689
19-5	Amino Acid Analysis of Peptides	691
19-6	Peptide Sequencing: The Edman Degradation	693
19-7	Peptide Synthesis	696

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). erially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

783

19-8	Protein Structure	700
19-9	Enzymes and Coenzymes	703
19-10	How Do Enzymes Work? Citrate Synthase	707
	SOMETHING EXTRA The Protein Data Bank	710

20 Amino Acid Metabolism | 714

20-1	An Overview of Metabolism and Biochemical Energy	715
20-2	Catabolism of Amino Acids: Deamination	719
20-3	The Urea Cycle	723
20-4	Catabolism of Amino Acids: The Carbon Chains	728
20-5	Biosynthesis of Amino Acids	731
	SOMETHING EXTRA Visualizing Enzyme Structures	735

21 Biomolecules: Carbohydrates | 738

21-1	Classifying Carbohydrates	739
21-2	Representing Carbohydrate Stereochemistry: Fischer Projections	740
21-3	D,L Sugars	745
21-4	Configurations of the Aldoses	746
21-5	Cyclic Structures of Monosaccharides: Anomers	750
21-6	Reactions of Monosaccharides	753
21-7	The Eight Essential Monosaccharides	761
21-8	Disaccharides	762
21-9	Polysaccharides and Their Synthesis	765
21-10	Some Other Important Carbohydrates	768
	SOMETHING EXTRA Sweetness	770

22 Carbohydrate Metabolism | 773

22-1	Hydrolysis of Complex Carbohydrates	774
22-2	Catabolism of Glucose: Glycolysis	776

22-3 Conversion of Pyruvate to Acetyl CoA

22-4	The Citric Acid Cycle		787
22-5	Biosynthesis of Glucose	e: Gluconeogenesis	794
	SOMETHING EXTRA	Influenza Pandemics	802

23 Biomolecules: Lipids and Their Metabolism | 805

23-1	Waxes, Fats, and Oils	806
23-2	Soap	809
23-3	Phospholipids	811
23-4	Catabolism of Triacylglycerols: The Fate of Glycerol	813
23-5	Catabolism of Triacylglycerols: $oldsymbol{eta}$ -Oxidation	816
23-6	Biosynthesis of Fatty Acids	820
23-7	Prostaglandins and Other Eicosanoids	826
23-8	Terpenoids	829
23-9	Steroids	837
23-10	Biosynthesis of Steroids	842
23-11	Some Final Comments on Metabolism	848
	SOMETHING EXTRA Statin Drugs	849

24 Biomolecules: Nucleic Acids and Their Metabolism | 852

24-1	Nucleotides and Nucleic Acids	852
24-2	Base Pairing in DNA: The Watson–Crick Model	855
24-3	Replication of DNA	858
24-4	Transcription of DNA	859
24-5	Translation of RNA: Protein Biosynthesis	861
24-6	DNA Sequencing	864
24-7	DNA Synthesis	866
24-8	The Polymerase Chain Reaction	869
24-9	Catabolism of Nucleotides	871
24-10	Biosynthesis of Nucleotides	873
	SOMETHING EXTRA DNA Fingerprinting	875

To access the following online-only chapters, enter ISBN: 978-1-285-84291-2 at **www.cengagebrain.com** and visit this book's companion website.

e25 Secondary Metabolites: An Introduction to Natural Products Chemistry | 877

25-1	Classifying Natural Products	878
25-2	Biosynthesis of Pyridoxal Phosphate	879
25-3	Biosynthesis of Morphine	884
25-4	Biosynthesis of Erythromycin	894
	SOMETHING EXTRA Bioprospecting: Hunting for Natural Products	903

e26 Orbitals and Organic Chemistry: Pericyclic Reactions | 905

26-1	Molecular Orbitals of Conjugated Pi Systems	905
26-2	Electrocyclic Reactions	908
26-3	Stereochemistry of Thermal Electrocyclic Reactions	910
26-4	Photochemical Electrocyclic Reactions	912
26-5	Cycloaddition Reactions	913
26-6	Stereochemistry of Cycloadditions	914
26-7	Sigmatropic Rearrangements	917
26-8	Some Examples of Sigmatropic Rearrangements	919
26-9	A Summary of Rules for Pericyclic Reactions	921
	SOMETHING EXTRA Vitamin D, the Sunshine Vitamin	922

e27 Synthetic Polymers | 925

27-1	Chain-Growth Polymers	926
27-2	Stereochemistry of Polymerization: Ziegler-Natta Catalysts	928
27-3	Copolymers	930
27-4	Step-Growth Polymers	932

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

27-5	Olefin Metathesis Polymerization	934
27-6	Polymer Structure and Physical Properties	936
	SOMETHING EXTRA Biodegradable Polymers	940

Appendices

Nomenclature of Polyfunctional Organic Compounds	A-1
Acidity Constants for Some Organic Compounds	A-7
Glossary	A-9
Answers to In-Text Problems	A-31
	Nomenclature of Polyfunctional Organic Compounds Acidity Constants for Some Organic Compounds Glossary Answers to In-Text Problems

Index | 1-1

PREFACE

I've taught organic chemistry many times for many years. Like most faculty, I began by trying to show 19-year-old students the logic and beauty of the subject, thinking that they would find it as fascinating as I did. It didn't take long, though, before I realized what a disconnect there was between my own interests and expectations and those of my students. Some students did develop a real appreciation for the subject, but most seemed to worry primarily about getting into medical school. And why not? If a student has a clear career goal, why shouldn't that person focus his or her efforts toward meeting that goal?

All of us who teach organic chemistry know that the large majority of our students—90% or more, and including many chemistry majors—are interested primarily in medicine, biology, and other life sciences rather than in pure chemistry. But if we are primarily teaching future physicians, biologists, biochemists, and others in the life sciences (not to mention the occasional lawyer, politician, or business person), why do we continue to teach the way we do? Why do our textbooks and lectures spend so much time discussing details of topics that interest professional chemists but have no connection to biology? Wouldn't the limited amount of time we have be better spent paying more attention to the organic chemistry of living organisms and less to the organic chemistry of the research laboratory? Wouldn't it better serve our students if we helped them reach *their* goals rather than reach goals we set for them? I believe so, and I have written this book, *Organic Chemistry with Biological Applications*, third edition, to encourage others who might also be thinking that the time has come to do things a bit differently.

This is, first and foremost, a textbook on organic chemistry. Look through it and you'll find that almost all the standard topics are here, although the treatment of some has been attenuated to save space. Nevertheless, my guiding principle in writing this text has been to put a greater emphasis on those organic reactions and topics that are relevant to biological chemistry than on those that are not.

Organic chemistry, which began historically as the chemistry of living organisms, is now shifting back in that direction, judging from the increasing amount of biologically oriented research done in many chemistry departments and from the renaming of many departments to include chemical biology. Shouldn't our teaching reflect that shift?

Organization of the Text

Four distinct groups of chapters are apparent in this text. The first group (Chapters 1–6 and 10–11) covers the traditional principles of organic chemistry and spectroscopy that are essential for building further understanding.

xix

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The second group (Chapters 7–9 and 12–18) covers the common organic reactions found in all texts. As each laboratory reaction is discussed, however, a biological example is also shown to make the material more interesting and meaningful to students. For instance, trans fatty acids are described at the same time that catalytic hydrogenation is discussed (Section 8-5); biological methylations with *S*-adenosylmethionine are covered with S_N^2 reactions (Section 12-11); and biological reductions with NADH are introduced along with laboratory NaBH₄ reductions (Section 13-3).

The third group of chapters (19–24) is unique to this text in its depth of coverage. These chapters deal exclusively with the main classes of biomolecules—amino acids and proteins, carbohydrates, lipids, and nucleic acids and show how thoroughly organic chemistry permeates biological chemistry. Following an introduction to each class, major metabolic pathways for that class are discussed from the perspective of mechanistic organic chemistry.

And finally, for those faculty who want additional coverage of natural products, polymers, and pericyclic reactions, the book ends with a fourth group of chapters (25–27) devoted to those topics. This final group is available in both electronic and hard-copy formats at the request of the adopter.

What's New

Text content has been revised substantially for this 3rd edition as a result of user feedback. Most noticeably, two new chapters have been made available for those who want them: Chapter 26 on Pericyclic Reactions and Chapter 27 on Synthetic Polymers. Other changes include:

- Every chapter ends with a brief *Something Extra* essay that has been repositioned to follow immediately after the last text section where it is more likely to be noticed and read.
- The problems at the ends of chapters are now organized by topic to make it easier for students to find questions on specific subjects.
- New problems have been added in every chapter, 164 in all.
- Text references to all numbered **FIGURES** and **TABLES** are called out in color to help students move more easily between text and art.
- All figure captions have a boldfaced title, and the captions themselves use colored text to make it easier to focus on specific features in the figure art.

New topics in this 3rd edition include:

- A new Something Extra, "Organic Foods: Risk versus Benefit," in Chapter 1
- A new *Something Extra*, "Alkaloids: From Cocaine to Dental Anesthetics," in Chapter 2
- New coverage of bridged bicyclic molecules in Section 4-9
- New coverage of mercury-catalyzed alkyne hydration in Section 8-15
- New coverage of aromatic fluorination and fluorinated drugs in Section 9-6
- New coverage of alcohol to alkyl fluoride conversions in Section 12-3
- A new Section 12-5, "Organometallic Coupling Reactions," covering both organocopper reactions and the palladium-catalyzed Suzuki–Miyaura reaction

- A new *Something Extra*, "Naturally Occurring Organohalides," in Chapter 12
- New coverage of epoxide cleavage by nucleophiles in Section 13-10
- A new Section 13-11, "Crown Ethers and Ionophores"
- New coverage of hydrates of α -keto acids in Section 14-5
- A new Something Extra, "Barbiturates," in Chapter 17
- Threonine catabolism deleted from Section 20-4
- New coverage of Kiliani–Fischer carbohydrate chain extension and Wohl degradation in Section 21-6
- A new Section 23-7, "Prostaglandins and Other Eicosanoids"
- A new Something Extra, "Statin Drugs," in Chapter 23
- A new electronic Chapter 26, "Orbitals and Organic Chemistry: Pericyclic Reactions"
- A new electronic Chapter 27, "Synthetic Polymers"

I believe that there is more than enough standard organic chemistry in this book, and that the coverage of biological chemistry far surpasses that found in any other text. My hope is that all the students we teach, including those who worry about medical school, will come to agree that there is also logic and beauty here.

Features

Reaction Mechanisms

The innovative vertical presentation of reaction mechanisms that has become a hallmark of all my texts is retained in *Organic Chemistry with Biological Applications*, third edition. Mechanisms in this format have the reaction steps printed vertically, while the changes taking place in each step are explained next to the reaction arrows. With this format, students can see what is occurring at each step in a reaction without having to jump back and forth between structures and text. See Figure 14.4 for a chemical example and Figure 22.8 for a biological example.

Visualization of Biological Reactions

One of the most important goals of this book is to demystify biological chemistry—to show students how the mechanisms of biological reactions are the same as those of laboratory organic reactions. Toward this end, and to let students visualize more easily the changes that occur during reactions of large biomolecules, I use an innovative method for focusing attention on the reacting parts in large molecules by "ghosting" the nonreacting parts. See Figure 13.4 for an example.

Other Features

• "Why do we have to learn this?" I've been asked this question by students so many times that I thought I should answer it in writing. Thus, every chapter begins with a short introduction called "Why This Chapter?" that provides an up-front answer to the question, explaining why the material about to be covered is important and how the organic chemistry in each chapter relates to biological chemistry.

- Worked Examples in each chapter are titled to give students a frame of reference. Each Worked Example includes a Strategy and worked-out Solution, followed by Problems for students to try on their own.
- A *Something Extra* is provided in each chapter following the final text section to relate real-world concepts to students' lives. New topics in this edition include Organic Foods: Risk versus Benefit (Chapter 1), Alkaloids: From Cocaine to Dental Anesthetics (Chapter 2), Naturally Occurring Organohalides (Chapter 12), Barbiturates (Chapter 17), and Statin Drugs (Chapter 23).
- Visualizing Chemistry problems at the end of each chapter offer students an opportunity to see chemistry in a different way by visualizing whole molecules rather than simply interpreting structural formulas.
- The Summary and Key Word list at the end of each chapter helps students focus on the key concepts in that chapter.
- The Summary of Reactions at the end of specific chapters brings together the key reactions from those chapters into a single complete list.
- An overview entitled "A Preview of Carbonyl Chemistry" following Chapter 13 highlights the idea that studying organic chemistry involves both summarizing past ideas and looking ahead to new ones.
- Current IUPAC nomenclature rules are used in this text. Recognizing that these rules have not been universally adopted in the United States, the small differences between new and old rules are also discussed.

Alternate Edition

Hybrid version with access (24 months) to OWLv2 with MindTap Reader ISBN: 978-1-285-86784-7

A briefer, paperbound version of *Organic Chemistry with Biological Applications,* third edition, does not contain the end-of-chapter problems, which can be assigned in OWL, the online homework and learning system for this book. Access to OWLv2 and MindTap Reader eBook is included with the Hybrid version. MindTap Reader is the full version of the text, with all end-of-chapter questions and problem sets.

Supporting Materials for Students and Instructors

Please visit **www.cengage.com/chemistry/mcmurry/ocba3e** for information about student and instructor resources for this text.

Acknowledgments

I thank all the people who helped to shape this book and its message. At Cengage Learning they include Maureen Rosener, product manager; Sandra Kiselica, content developer; Julie Schuster, marketing manager; Teresa Trego, content production manager; Lisa Weber, media editor; Elizabeth Woods, content coordinator; Karolina Kiwak, product assistant; Maria Epes, art director; and Matt Rosenquist at Graphic World. Special thanks to Jordan Fantini of Denison University, who did an outstanding job in proofing all of the chapters in this text. I am grateful to the following colleagues who reviewed the manuscript for this book.

REVIEWERS OF THE THIRD EDITION

Peter Bell, Tarleton State University Andrew Frazer, University of Central Florida Lee Friedman, University of Maryland–College Park Tom Gardner, Gustavus Adolphus College Bobbie Grey, Riverside City College Susan Klein, Manchester College William Lavell, Camden County College Jason Locklin, University of Georgia Barbara Mayer, California State University–Fresno James Miranda, Sacramento State University Gabriela Smeureanu, Hunter College Catherine Welder, Dartmouth College Linfeng Xie, University of Wisconsin–Oshkosh

REVIEWERS OF PREVIOUS EDITIONS

Peter Alaimo, Seattle University Helen E. Blackwell, University of Wisconsin Sheila Browne, Mount Holyoke College Joseph Chihade, Carleton College Robert S. Coleman, Ohio State University Gordon Gribble, Dartmouth College John Grunwell, Miami University John Hoberg, University of Wyoming Eric Kantorowski, California Polytechnic State University Kevin Kittredge, Siena College Rizalia Klausmeyer, Baylor University Bette Kreuz, University of Michigan– Dearborn Thomas Lectka, Johns Hopkins University Paul Martino, Flathead Valley Community College Eugene Mash, University of Arizona Pshemak Maslak, Pennsylvania State University Kevin Minbiole, James Madison University Andrew Morehead, East Carolina University Manfred Reinecke, Texas Christian University Frank Rossi, State University of New York–Cortland Miriam Rossi, Vassar College Paul Sampson, Kent State University K. Barbara Schowen, University of Kansas Martin Semmelhack, Princeton University Megan Tichy, Texas A&M University Bernhard Vogler, University of Alabama–Huntsville All author royalties from this book are being donated to the Cystic Fibrosis Foundation.

Structure and Bonding

A model of the enzyme HMG-CoA reductase. which catalyzes a crucial step in the body's synthesis of cholesterol.

WHY THIS **CHAPTER?**

We'll ease into the study of organic chemistry by first reviewing some ideas about atoms, bonds, and molecular geometry that you may recall from your general chemistry course. Much of the material in this chapter and the next is likely to be familiar to you, but it's nevertheless a good idea to make sure you understand it before going on.

A scientific revolution is now taking place—a revolution that will give us safer and more effective medicines, cure our genetic diseases, increase our life spans, and improve the quality of our lives. The revolution is based in understanding the structure, regulation, and function of the approximately 21,000 genes in the human body, and it relies on organic chemistry as the enabling science. It is our fundamental chemical understanding of biological processes at the molecular level that has made the revolution possible and that continues to drive it. Anyone who wants to understand or be a part of the remarkable advances now occurring in medicine and the biological sciences must first understand organic chemistry.

As an example of how organic and biological chemistry together are affecting modern medicine, look at coronary heart disease-the buildup of cholesterol-containing plaques on the walls of arteries, leading to restricted blood flow and eventual heart attack. Coronary heart disease is the leading cause of death for both men and women older than age 20, and it's estimated that up to one-third of women and one-half of men will develop the disease at some point in their lives.

The onset of coronary heart disease is directly correlated with blood cholesterol levels, and the first step in disease prevention is to lower those levels. It turns out that only about 25% of our blood cholesterol comes from what we eat; the remaining 75% (about 1000 mg each day) is made, or biosynthesized, by our bodies from dietary fats and carbohydrates. Thus, any effective plan for

CONTENTS

- 1-1 Atomic Structure: The Nucleus
- 1-2 Atomic Structure: Orbitals
- 1-3 Atomic Structure: Electron Configurations
- Development of Chemical 1-4 Bonding Theory
- 1-5 Describing Chemical Bonds: Valence Bond Theory
- sp^3 Hybrid Orbitals and the 1-6 Structure of Methane
- sp^3 Hybrid Orbitals and the 1-7 Structure of Ethane
- sp^2 Hybrid Orbitals and the 1-8 Structure of Ethylene
- sp Hybrid Orbitals and the 1-9 Structure of Acetylene
- 1-10 Hybridization of Nitrogen, Oxygen, Phosphorus, and Sulfur
- 1-11 Describing Chemical Bonds: Molecular Orbital Theory
- 1-12 Drawing Chemical Structures

SOMETHING EXTRA

Organic Foods: Risk versus Benefit

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eB Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequ

lowering our cholesterol level means limiting the amount that our bodies biosynthesize, which in turn means understanding and controlling the chemical reactions that make up the metabolic pathway for cholesterol biosynthesis.

Now look at **FIGURE 1.1**. Although the figure probably looks unintelligible at this point, don't worry; before long it will make perfectly good sense. What's shown in Figure 1.1 is the biological conversion of a compound called 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) to mevalonate, a crucial step in the pathway by which our bodies synthesize cholesterol. Also shown in the figure is an X-ray crystal structure of the active site in the HMG-CoA reductase enzyme that catalyzes the reaction, along with a molecule of the drug atorvastatin (sold under the trade name Lipitor), which binds to the enzyme and stops it from functioning. With the enzyme thus inactivated, cholesterol biosynthesis is prevented.

Atorvastatin is one of a widely prescribed class of drugs called *statins*, which reduce a person's risk of coronary heart disease by lowering the level of cholesterol in his or her blood. Taken together, the statins—atorvastatin (Lipitor), simvastatin (Zocor), rosuvastatin (Crestor), pravastatin (Pravachol), lovastatin (Mevacor), and several others—are the most widely prescribed drugs in the world, with global sales of \$29 billion annually.

The statins function by blocking the HMG-CoA reductase enzyme and preventing it from converting HMG-CoA to mevalonate, thereby limiting the body's biosynthesis of cholesterol. As a result, blood cholesterol levels drop and coronary heart disease becomes less likely. It sounds simple, but it would

FIGURE 1.1 How does atorvastatin control cholesterol biosynthesis? The metabolic conversion of

3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) to mevalonate is a crucial step in the body's pathway for biosynthesizing cholesterol. An X-ray crystal structure of the active site in the HMG-CoA reductase enzyme that catalyzes the reaction is shown, along with a molecule of atorvastatin (Lipitor) that is bound in the active site and stops the enzyme from functioning. With the enzyme thus inactivated, cholesterol biosynthesis is prevented.

be impossible without detailed knowledge of the steps in the pathway for cholesterol biosynthesis, the enzymes that catalyze those steps, and how precisely shaped organic molecules can be designed to block those steps. Organic chemistry is what makes it all happen.

Historically, the term **organic chemistry** dates to the late 1700s, when it was used to mean the chemistry of compounds found in living organisms. Little was known about chemistry at that time, and the behavior of the "organic" substances isolated from plants and animals seemed different from that of the "inorganic" substances found in minerals. Organic compounds were generally low-melting solids and were usually more difficult to isolate, purify, and work with than high-melting inorganic compounds. By the mid-1800s, however, it was clear that there was no fundamental difference between organic and inorganic compounds: the same principles explain the behaviors of all substances, regardless of origin or complexity. The only distinguishing characteristic of organic chemicals is that *all contain the element carbon*.

But why is carbon special? Why, of the more than 70 million presently known chemical compounds, do more than 99% of them contain carbon? The answers to these questions come from carbon's electronic structure and its consequent position in the periodic table (FIGURE 1.2). As a group 4A element, carbon can share four valence electrons and form four strong covalent bonds. Furthermore, carbon atoms can bond to one another, forming long chains and rings. Carbon, alone of all elements, is able to form an immense diversity of compounds, from the simple to the staggeringly complex—from methane, with one carbon atom, to DNA, which can have more than 100 million carbons.

Group	0																
1A																	8A
н	2A											3A	4A	5A	6A	7A	He
Li	Be											В	С	N	ο	F	Ne
Na	Mg											AI	Si	Р	S	CI	Ar
к	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	ΤI	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac															

FIGURE 1.2 Elements commonly found in organic compounds. Carbon.

hydrogen, and other elements commonly found in organic compounds are shown in the colors typically used to represent them.

Not all carbon compounds are derived from living organisms of course. Modern chemists have developed a remarkably sophisticated ability to design and synthesize new organic compounds in the laboratory—medicines, dyes, polymers, and a host of other substances. Organic chemistry touches the lives of everyone; its study can be a fascinating undertaking.

1-1 Atomic Structure: The Nucleus

As you might remember from your general chemistry course, an atom consists of a dense, positively charged *nucleus* surrounded at a relatively large distance by negatively charged *electrons* (FIGURE 1.3). The nucleus consists

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4

of subatomic particles called *neutrons*, which are electrically neutral, and *protons*, which are positively charged. Because an atom is neutral overall, the number of positive protons in the nucleus and the number of negative electrons surrounding the nucleus are the same.

Although extremely small—about 10^{-14} to 10^{-15} meter (m) in diameter the nucleus nevertheless contains essentially all the mass of the atom. Electrons have negligible mass and circulate around the nucleus at a distance of approximately 10^{-10} m. Thus, the diameter of a typical atom is about 2×10^{-10} m, or 200 picometers (pm), where 1 pm = 10^{-12} m. To give you an idea of how small this is, a thin pencil line is about 3 million carbon atoms wide. (Many organic chemists and biochemists, particularly those in the United States, still use the unit *angstrom* (Å) to express atomic distances, where 1 Å = 100 pm = 10^{-10} m, but we'll stay with the SI unit picometer in this book.)

charged nucleus contains most of the atom's mass and is surrounded by negatively charged electrons. The three-dimensional view on the right shows calculated electron-density surfaces. Electron density increases steadily toward the nucleus and is 40 times greater at the **blue solid surface** than at the **gray mesh surface**.

A specific atom is described by its *atomic number* (Z), which gives the number of protons (or electrons) it contains, and its *mass number* (A), which gives the total number of protons plus neutrons in its nucleus. All the atoms of a given element have the same atomic number—1 for hydrogen, 6 for carbon, 15 for phosphorus, and so on—but they can have different mass numbers depending on how many neutrons they contain. Atoms with the same atomic number but different mass numbers are called **isotopes**. The weighted average mass in unified atomic mass units (u) of an element's naturally occurring isotopes is called the element's *atomic weight*—1.008 u for hydrogen, 12.011 u for carbon, 30.974 u for phosphorus, and so on.

1-2 Atomic Structure: Orbitals

How are the electrons distributed in an atom? According to the quantum mechanical model, the behavior of a specific electron in an atom can be described by a mathematical expression called a *wave equation*—the same sort of expression used to describe the motion of waves in a fluid. The solution to a wave equation is called a *wave function*, or **orbital**, and is denoted by the Greek letter psi, ψ .

When the square of the wave function, ψ^2 , is plotted in three-dimensional space, an orbital describes the volume of space around a nucleus that an electron is most likely to occupy. You might therefore think of an orbital as looking like a photograph of the electron taken at a slow shutter speed. In such a photo, the orbital would appear as a blurry cloud, indicating the region of space around the nucleus where the electron has been. This electron cloud doesn't have a sharp boundary, but for practical purposes we can set the limits

5

by saying that an orbital represents the space where an electron spends 90% to 95% of its time.

What do orbitals look like? There are four different kinds of orbitals, denoted *s*, *p*, *d*, and *f*, each with a different shape. Of the four, we'll be concerned primarily with *s* and *p* orbitals because these are the most common in organic and biological chemistry. An *s* orbital is spherical, with the nucleus at its center; a *p* orbital is dumbbell-shaped; and four of the five *d* orbitals are cloverleaf-shaped, as shown in **FIGURE 1.4**. The fifth *d* orbital is shaped like an elongated dumbbell with a doughnut around its middle.

FIGURE 1.4 Representations of *s*, *p*, and *d* orbitals. An *s* orbital is spherical, a *p* orbital is dumbbellshaped, and four of the five *d* orbitals are cloverleaf-shaped. **Different lobes** of *p* orbitals are often drawn for convenience as teardrops, but their true shape is more like that of a doorknob, as indicated.

The orbitals in an atom are organized into different layers around the nucleus, or **electron shells**, of successively larger size and energy. Different shells contain different numbers and kinds of orbitals, and each orbital within a shell can be occupied by a maximum of two electrons. The first shell contains only a single *s* orbital, denoted 1*s*, and thus holds only 2 electrons. The second shell contains one 2*s* orbital and three 2*p* orbitals and thus holds a total of 8 electrons. The third shell contains a 3*s* orbital, three 3*p* orbitals, and five 3*d* orbitals, for a total capacity of 18 electrons. These orbital groupings and their energy levels are shown in **FIGURE 1.5**.

/							
		3rd shell (<i>capacity</i> —18 electrons)	3d 3p 3s		+ + +	+	-
Enorgy	cnergy	2nd shell (<i>capacity</i> —8 electrons)	2p 2s		-₩-		
		1st shell (<i>capacity</i> —2 electrons)	1 <i>s</i>	-+↓			

The three different p orbitals within a given shell are oriented in space along mutually perpendicular directions, denoted p_x , p_y , and p_z . As shown in **FIGURE 1.6**, the two lobes of each p orbital are separated by a region of zero electron density called a **node**. Furthermore, the two orbital regions separated by the node have different algebraic signs, + and -, in the wave function, as represented by the different colors in Figure 1.6. As we'll see in Section 1-11, the algebraic signs of the different orbital lobes have important consequences with respect to chemical bonding and chemical reactivity. FIGURE 1.5 Energy levels of electrons in an atom. The first shell holds a maximum of 2 electrons in one 1s orbital; the second shell holds a maximum of 8 electrons in one 2s and three 2p orbitals; the third shell holds a maximum of 18 electrons in one 3s, three 3p, and five 3d orbitals; and so on. The two electrons in each orbital are represented by up and down arrows, $\uparrow \downarrow$. Although not shown, the energy level of the 4s orbital falls between 3p and 3d.

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 1.6 Shapes of the

2p orbitals. Each of the three mutually perpendicular, dumbbellshaped orbitals has two lobes separated by a node. The **two lobes** have different algebraic signs in the corresponding wave function, as indicated by the different colors.

1-3 Atomic Structure: Electron Configurations

The lowest-energy arrangement, or **ground-state electron configuration**, of an atom is a listing of the orbitals occupied by its electrons. We can predict this arrangement by following three rules:

Rule 1

The lowest-energy orbitals fill up first, according to the order $1s \rightarrow 2s \rightarrow 2p \rightarrow 3s \rightarrow 3p \rightarrow 4s \rightarrow 3d$, a statement called the *aufbau principle*. Note that the 4s orbital lies between the 3p and 3d orbitals in energy.

Rule 2

Electrons act in some ways as if they were spinning around an axis, in somewhat the same way that the earth spins. This spin can have two orientations, denoted as up (\uparrow) and down (\downarrow). Only two electrons can occupy an orbital, and they must be of opposite spin, a statement called the *Pauli exclusion principle*.

Rule 3

If two or more empty orbitals of equal energy are available, one electron occupies each with spins parallel until all orbitals are half-full, a statement called *Hund's rule*.

Some examples of how these rules apply are shown in TABLE 1.1. Hydrogen, for instance, has only one electron, which must occupy the lowest-energy orbital. Thus, hydrogen has a 1s ground-state configuration. Carbon has six electrons and the ground-state configuration $1s^2 2s^2 2p_x^{-1} 2p_y^{-1}$, and so forth. Note that a superscript is used to represent the number of electrons in a particular orbital.

TABLE 1.1 Ground-State Electron Configurations of Some Elements						
Element	Atomic number	Configuration	Element	Atomic number	Configuration	
Hydrogen	1	1 <i>s</i> 🕂	Phosphorus	15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Carbon	6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Unless otherwise noted, all content on this page is Cengage Learning.

PROBLEM 1.1

Give the ground-state electron configuration for each of the following elements: (a) Oxygen (b) Phosphorus (c) Sulfur

PROBLEM 1.2

How many electrons does each of the following biological trace elements have in its outermost electron shell?

(a) Magnesium (b) Cobalt (c) Selenium

1-4 Development of Chemical Bonding Theory

By the mid-1800s, the new science of chemistry was developing rapidly and chemists had begun to probe the forces holding atoms together in compounds. In 1858, August Kekulé and Archibald Couper independently proposed that, in all its compounds, carbon is *tetravalent*—it always forms four bonds when it joins other elements to form stable compounds. Furthermore, said Kekulé, carbon atoms can bond to one another to form extended chains of linked atoms.

Shortly after the tetravalent nature of carbon was proposed, extensions to the Kekulé–Couper theory were made when the possibility of *multiple* bonding between atoms was suggested. Emil Erlenmeyer proposed a carbon–carbon triple bond for acetylene, and Alexander Crum Brown proposed a carbon– carbon double bond for ethylene. In 1865, Kekulé provided another major advance when he suggested that carbon chains can double back on themselves to form *rings* of atoms.

Although Kekulé and Couper were correct in describing the tetravalent nature of carbon, chemistry was still viewed in a two-dimensional way until 1874. In that year, Jacobus van't Hoff and Joseph Le Bel added a third dimension to our ideas about organic compounds. They proposed that the four bonds of carbon are not oriented randomly but have specific spatial directions. Van't Hoff went even further and suggested that the four atoms to which carbon is bonded sit at the corners of a regular tetrahedron, with carbon in the center.

A representation of a tetrahedral carbon atom is shown in **FIGURE 1.7**. Note the conventions used to show three-dimensionality: solid lines represent bonds in the plane of the page, the heavy wedged line represents a bond coming out of the page toward the viewer, and the dashed line represents a bond receding back behind the page away from the viewer. These representations will be used throughout this text.

FIGURE 1.7 A representation of van't Hoff's tetrahedral carbon

atom. The solid lines represent bonds in the plane of the paper, the heavy wedged line represents a bond coming out of the plane of the page, and the dashed line represents a bond going back behind the plane of the page.

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8

Why, though, do atoms bond together, and how can bonds be described electronically? The *why* question is relatively easy to answer: atoms bond together because the compound that results is more stable and lower in energy than the separate atoms. Energy (usually as heat) is always released and flows *out of* the chemical system when a chemical bond forms. Conversely, energy must always be put *into* the system to break a chemical bond. Making bonds always releases energy, and breaking bonds always absorbs energy. The *how* question is more difficult. To answer it, we need to know more about the electronic properties of atoms.

We know through observation that eight electrons (an electron *octet*) in an atom's outermost shell, or **valence shell**, impart special stability to the noblegas elements in group 8A of the periodic table: Ne (2 + 8); Ar (2 + 8 + 8); Kr (2 + 8 + 18 + 8). We also know that the chemistry of main-group elements is governed by their tendency to take on the electron configuration of the nearest noble gas. The alkali metals in group 1A, for example, achieve a noble-gas configuration by losing the single *s* electron from their valence shell to form a cation, while the halogens in group 7A achieve a noble-gas configuration by gaining a *p* electron to fill their valence shell and form an anion. The resultant ions are held together in compounds like Na⁺ Cl⁻ by an electrostatic attraction of unlike charges that we call an **ionic bond**.

But how do elements closer to the middle of the periodic table form bonds? Look at methane, CH_4 , the main constituent of natural gas, for example. The bonding in methane is not ionic because it would take too much energy for carbon $(1s^2 2s^2 2p^2)$ to either gain or lose *four* electrons to achieve a noble-gas configuration. Instead, carbon bonds to other atoms, not by gaining or losing electrons, but by *sharing* them. Such a shared-electron bond, first proposed in 1916 by G. N. Lewis, is called a **covalent bond**. The neutral collection of atoms held together by covalent bonds is called a **molecule**.

A simple way of indicating the covalent bonds in molecules is to use what are called *Lewis structures*, or **electron-dot structures**, in which the valenceshell electrons of an atom are represented as dots. Thus, hydrogen has one dot representing its 1s electron, carbon has four dots $(2s^2 2p^2)$, oxygen has six dots $(2s^2 2p^4)$, and so on. A stable molecule results whenever a noble-gas configuration is achieved for all the atoms—eight dots (an octet) for main-group atoms or two dots for hydrogen. Simpler still is the use of *Kekulé structures*, or **linebond structures**, in which two-electron covalent bonds are indicated as lines drawn between atoms.

The number of covalent bonds an atom forms depends on how many additional valence electrons it needs to reach a noble-gas configuration. Hydrogen has one valence electron (1s) and needs one more to reach the helium configuration $(1s^2)$, so it forms one bond. Carbon has four valence electrons $(2s^2 2p^2)$ and needs four more to reach the neon configuration $(2s^2 2p^6)$, so it forms four bonds. Nitrogen has five valence electrons $(2s^2 2p^3)$, needs three more, and forms three bonds; oxygen has six valence electrons $(2s^2 2p^4)$, needs two more, and forms two bonds; and the halogens have seven valence electrons, need one more, and form one bond.

Valence electrons that are not used for bonding are called **lone-pair electrons**, or *nonbonding electrons*. The nitrogen atom in ammonia (NH₃), for instance, shares six valence electrons in three covalent bonds and has its remaining two valence electrons in a nonbonding lone pair. As a time-saving shorthand, nonbonding electrons are often omitted when drawing line-bond structures, but you still have to keep them in mind since they're often crucial in chemical reactions.

Predicting the Number of Bonds Formed by Atoms in Molecules WORKED EXAMPLE	Predicting the Number of Bonds Formed b	y Atoms in Molecules	WORKED EXAMPLE 1.
--	---	----------------------	-------------------

How many hydrogen atoms does phosphorus bond to in phosphine, PH??

Strategy

Identify the periodic group of phosphorus, and tell from that how many electrons (bonds) are needed to make an octet.

Solution

Phosphorus, like nitrogen, is in group 5A of the periodic table and has five valence electrons. It thus needs to share three more electrons to make an octet and therefore bonds to three hydrogen atoms, giving PH_3 .

Drawing Electron-Dot and Line-Bond Structures

Draw both electron-dot and line-bond structures for chloromethane, CH₃Cl.

Strategy

Remember that a bond—that is, a pair of shared electrons—is represented as a line between atoms.